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We prove here the

THEOREM. Let A be a uniform algebra on X, E c X a generalized peak
set lor A, and IE A. Then lor every e >0 there exists g E A satislying:

(i) gIE=/IE;

(ii) II gllx = lilliE; and

(iii) II g - Illx < 1I/IIx -lilliE + e.

This both refines and extends the result of [1] in which the theorem is
proved for A the disc algebra on the unit circle T, I a fixed member of A, and
E a varying closed subset of T of Lebesgue measure 0, and condition (iii) is
replaced by Ilg-/IIT=O(II/IIT-II/IIE); it is also proved in [I] that 0
cannot be replaced by 0, a fact which is immediate from condition (ii).

The theorem is sharp in that the e can never be removed in (iii), and even
for the disc algebra one cannot ordinarily replace (iii) by II g -I II T ~ II I II T 

lilliE: if/E A is not of constant modulus but assumes its maximum'modulus
throughout some arc of T, take E to consist of one point at which II I is
strictly less than this maximum.

The method of proof in this paper is rather different from that in [1]. We
use duality together with the following fact [2, n. 12.7 and n.12.5] and its
consequence:

If u E A IE and p is a positive continuous function on X such that
IuI~ p on E, then there is w E A such that w = u on E and IwI~ p
on X. (1)

If g E A and G is any Gfj set containing E, then there is a sequence
(gn) in A such that gn'=O on E, Ilgnllx~llgllx, and gn--+g
pointwise off G. (2)
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To derive (2) from (l), use (I) to obtain a sequence (wn ) in A such that
wn== 1 on E, II wnllx = I, and wn ---+ 0 pointwise off G; if (An) is a sequence
of numbers such that IAnl<l but An---+-I, then gn=
«AnWn-An)(I-In(AnWnn-l)g works in (2). This is the only point at
which the algebra structure of A plays a direct role. If A is merely a closed
subspace of C{X), then [2, 11.12.51, (I) is equivalent to having ,uE E A.l
whenever ,u E A 1-. In this situation, (I) permits us to find (w n) in A such that
wn= g on E, II wnllx~;U giIE' and wn ---+ 0 pointwise off G, and gn = g - wn
allows us to deduce (2) with II gnllx ~ 211 gllx' The net result is that the
theorem remains true with (iii) replaced by II g - Illx < 2(ll/llx -lilliE) + c.

We now prove the theorem. We may suppose lilliE = 1 < P = 11/11x'
Denote by B the closed unit ball of A and by BE the set of functions in B
which vanish identically on E. We begin by proving that if c > 1 then

(3)

If (3) were false there would be ¢J in the closed unit ball of A * such that
I~(f+ h)1 ~ c for all h E (p - 1) BE' ¢J is given by integration against a
complex regular Borel measure ,u of total variation norm 11,u11 = II~II. It
follows that if F is any Borel set then the functional on A induced by ,uF' the
restriction of,u to F, has norm equal to II,uFII, the total variation of ,up Let G
be a Gs set containing E such that ,uEC is supported off G. It follows from (2)
and our observations that supll¢J(h)l: hEBE} = II,udl. Since 1~(f)1 ~ II,uEII +
pll,uEcll ~ 1 + (p - 1)II,uEcll we have infll~(f+ h)l: h E (p - I)Bd ~ I¢J(f)I
sup{l¢J(h)l: h E (p - I)Bd ~ 1 + (p - I) II,uFII- (p - I) II,uECIl = I, contra
dicting our choice of ~.

Thus (3) holds for c> I, so we may choose geEc-IBn
(c- 21 + c- 2(p - I) BE)' Define a function p on X by P = min(1 - c- 2

, 1
Igel). p is continuous, p~I-C-l>O on X, and on E 1(I_c-2)/1~

1 - c- 2 ~ 1 -I gel so that 1(1 - c- 2)/1 ~p. By (1) there is he E A such that
he = (1 - c- 2

) I on E and Ihe I~p on X. Then g = ge + he clearly satisfies (i)
and (ii), and

III - gllx ~ III - c-'illx + Ilc-
21- gellx + Ilhelix

~ (1 - c- 2 )p + c- 2(p - 1) + (l- c- 2
)

which is less than p - 1 + e provided c is near enough to 1 so that
c2 < 2/(2 - c). The proof is complete.
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